Microscopic expressions for the thermodynamic temperature Owen
نویسنده
چکیده
We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the Molecular Dynamics (MD) ensemble, and test them with a short-ranged potential MD simulation. 05.20.-y 05.20.Gd Typeset using REVTEX 1
منابع مشابه
Calculation of Thermodynamic properties of Fluid Using a New Equation of State
Using the Lennard-Jones (12-6) potential, a new equation of state is obtained that can predict properties of both gases and liquids relatively well. This equation of state is given as (Z-a)V2=(A/V2)-B, where Z is the compressibility factor, A and B are constants, and a is an adjustable parameter that depends on the temperature, volume and the nature of the fluid, and i...
متن کاملThermal Contact
The concepts of temperature and entropy as applied in equilibrium thermodynamics do not easily generalize to nonequilibrium systems and there are transient systems where thermodynamics cannot apply. However, it is possible that nonequilibrium steady states may have a thermodynamics description. We explore the consequences of a particular microscopic thermostat-reservoir contact needed to both s...
متن کاملThermodynamic derivations of conditions for chemical equilibrium and of Onsager reciprocal relations for chemical reactors.
For an isolated chemical reactor, we derive the conditions for chemical equilibrium in terms of either energy, volume, and amounts of constituents or temperature, pressure, and composition, with special emphasis on what is meant by temperature and chemical potentials as the system proceeds through nonequilibrium states towards stable chemical equilibrium. For nonequilibrium states, we give both...
متن کاملAnalytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملOn the definition and derivatives of macroscale energy for the description of multiphase systems
Modeling of flow and transport in environmental systems often involves formulation of conservation equations at spatial scales involving tens to hundreds of pore diameters in porous media or the depth of flow in a channel. Quantities such as density, temperature, internal energy, and velocity may not be uniform over these macroscopic length scales. The external gravitational potential causes gr...
متن کامل